矿业科学学报 (Oct 2022)

Study on hydration mechanism of calcium silicon slag composite geopolymer

  • Yang Zhijie,
  • Zhang De,
  • Kang Dong,
  • Mi Shizhong,
  • Yan Changwang,
  • Zhang Ju

DOI
https://doi.org/10.19606/j.cnki.jmst.2022.05.008
Journal volume & issue
Vol. 7, no. 5
pp. 577 – 584

Abstract

Read online

In order to realize the synergistic utilization of calcium silicon slag, fly ash and blast-furnace slag, this paper researched on hydration mechanism of calcium silicon slag composite geopolymer through preparation experiments of the calcium silicon slag composite geopolymer under different ratio of fly ash / blast-furnace slag.The results show that the calcium silicate slag base geopolymer is a binary composite cementitious material mainly composed of C—S—H and C(N)—A—S—H, which is formed by the hydration of β-calcium silicate itself and alkali-activated hydration.Compared with crystalline minerals, glass minerals are more prone to reaction with Ca(OH)2 and sodium silicate, resulting in a large amount of unreacted mullite remaining in the hydrates of 7 d when the fly ash / blast-furnace slag ratio is more than 0.5, but the mullite will continue to hydrate with the extension of curing time, and worm-like tetranatrolite and strip-like beidellite will be formed at 28 d.At the same time, when fly ash / blast-furnace slag ratio is 1.0, micromorphology of calcium silicate slag composite geopolymer is the most evenly distributed and dense, and its 28 d compressive strength reaches maximum 37.9 MPa.So, it indicates that the best synergistic effect among calcium silicon slag, fly ash and blast-furnace slag can be released under this condition.

Keywords