Journal of Asian Ceramic Societies (Jun 2024)

Modeling and preparation of additive-manufactured laser ceramics

  • Biwu Dong,
  • Jing Deng,
  • Shengmiao Feng,
  • Qiufeng Huang,
  • Jian Chen,
  • Yuchao Wang,
  • Jianhong Huang,
  • Wenxiong Lin

DOI
https://doi.org/10.1080/21870764.2024.2356335

Abstract

Read online

Additive manufacturing (AM) presents promising prospects for the production of laser ceramics, particularly those with composite structures. However, achieving uniform density within these ceramics is a formidable challenge, primarily due to the intrinsic limitations of uneven forces within the mold. This paper introduces the Density Spatiotemporal Evolution (DSE) model, a novel predictive tool designed to map the density distribution in laser ceramics throughout the AM process. The DSE model elucidates that ceramic density increases in proximity to the indenter and mold wall and reveals an oscillatory pattern in particle density during pressing. These insights have been corroborated through experimental measurements and simulation analyses. Leveraging the DSE model and a Simulated Annealing (SA) algorithm, an innovative AM process is proposed. The pressure exerted to each layer of ceramics is gradient distributed, i.e. 18, 18.36, 19.31, 22.08, 33.02 MPa. Preliminary experimental results indicate a significant enhancement in density uniformity, with an improvement of up to 45% in the optimized ceramics. The advancement promises to yield more homogeneous ceramic materials, potentially accelerating the progress of high-energy laser technology.

Keywords