International Journal of Molecular Sciences (Jul 2024)

MEG3-Mediated Oral Squamous-Cell-Carcinoma-Derived Exosomal miR-421 Activates Angiogenesis by Targeting HS2ST1 in Vascular Endothelial Cells

  • Chia-Yun Huang,
  • Sung-Tau Chou,
  • Yuan-Ming Hsu,
  • Wan-Ju Chao,
  • Guan-Hsun Wu,
  • Jenn-Ren Hsiao,
  • Horng-Dar Wang,
  • Shine-Gwo Shiah

DOI
https://doi.org/10.3390/ijms25147576
Journal volume & issue
Vol. 25, no. 14
p. 7576

Abstract

Read online

Exosomal microRNAs (miRNAs) from cancer cells play a key role in mediating the oral squamous cell carcinoma (OSCC) microenvironment. The objective of this study was to investigate how the long non-coding RNA (lncRNA) MEG3 affects OSCC angiogenesis through exosomal miR-421. Global miRNA microarray analysis and quantitative real-time PCR (qRT-PCR) were performed to determine the level of miRNAs in OSCC cell-derived exosomes. Cell migration, invasion, tube formation, immunohistochemistry, and hemoglobin concentrations were used to study the effects of exosomal miR-421 in angiogenesis. Western blotting was used to determine the expression level of HS2ST1 and VEGFR2-related downstream proteins. MiRNA array and qRT-PCR identified the upregulation of miR-421 in OSCC cell-derived exosomes. Furthermore, exosomal miR-421 can be taken up by human umbilical vein endothelial cells (HUVECs) and then target HS2ST1 through VEGF-mediated ERK and AKT phosphorylation, thereby promoting HUVEC migration, invasion, and tube formation. Additionally, forced expression of the lncRNA MEG3 in OSCC cells reduced exosomal miR-421 levels and then increased HS2ST1 expression, thereby reducing the VEGF/VEGFR2 pathway in HUVECs. Our results demonstrate a novel mechanism by which lncRNA MEG3 can act as a tumor suppressor and regulate endothelial angiogenesis through the exosomal miR-421/HS2ST1 axis, which provides a potential therapeutic strategy for OSCC angiogenesis.

Keywords