Heliyon (Jan 2024)

Mesenchymal stem cells aligned and stretched in self-assembling peptide hydrogels

  • Farzaneh Fouladgar,
  • Forough Ghasem Zadeh Moslabeh,
  • Yashesh Varun Kasani,
  • Nick Rogozinski,
  • Marc Torres,
  • Melanie Ecker,
  • Huaxiao Yang,
  • Yong Yang,
  • Neda Habibi

Journal volume & issue
Vol. 10, no. 1
p. e23953

Abstract

Read online

The presented research highlights a novel approach using fmoc-protected peptide hydrogels for the encapsulation and stretching of mesenchymal stem cells (MSCs). This study utilized a custom mechanical stretching device with a PDMS chamber to stretch human MSCs encapsulated in Fmoc hydrogels. The study assessed the influence of various solvents on the self-assembly and mechanical properties of the hydrogels, and MSC viability and alignment. Particularly we focused on fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) prepared in dimethyl sulfoxide (DMSO), hexafluoro-2-propanol (HFP), and deionized water (DiH2O).Through molecular self-assembly of the peptide sequence into β-sheets connected by π-π aromatic stacking of F–F groups, the peptide hydrogel was found to form a stiff, hydrated gel with nanofiber morphology and a compressive modulus ranging from 174 to 277 Pa. Therefore, this hydrogel can mimic certain critical features of the extracellular matrix and collagen. Evaluations of MSCs cultured on the peptide hydrogels, including viability, morphology, and alignment assessments using various staining techniques, demonstrated that 3D-cultured MSCs in Fmoc-FF/HFP and Fmoc-FF/DMSO, followed by mechanical stretching, exhibited elongated morphology with distinct microfilament fibers compared to the control cells, which maintained a round and spherical F-actin shape. Notably, peptide gels with a concentration of 5 mM maintained 100 % MSC viability.The findings indicate the potential and specific conditions for successful cell encapsulation and alignment within peptide hydrogels, highlighting a promising tissue engineering platform through the encapsulation of MSCs in peptide nanofibers followed by a stretching process. By enhancing our understanding of MSC-peptide hydrogel interactions, this research contributes to the development of biomaterials tailored for regenerative medicine.

Keywords