Forests (Apr 2021)

Influence of Abiotic and Biotic Factors on Soil Microbial Biomass in <i>Robinia pseudoacacia</i> Plantations in the Loess Hilly Region

  • Wenyan Xue,
  • Yunming Chen,
  • Congguo Dong,
  • Yuning Qiao

DOI
https://doi.org/10.3390/f12040501
Journal volume & issue
Vol. 12, no. 4
p. 501

Abstract

Read online

The ecological productivity of the Robinia pseudoacacia L. (RP) widely cultivated on the Loess hilly region has been widely questioned with its aging. Soil microbial biomass (SMB) plays a key role in soil nutrient dynamics and productivity of the ecosystems. Understanding the main ecological drivers of SMB is supposed to be of importance for ecosystem functioning of RP in the Loess hilly region. In this study, we identified the most influential factors affecting SMB at 2 layers (0–10 cm and 10–30 cm) using forward selection in terms of plant characteristics (forest age, tree height, diameter at breast height, tree canopy, crown base height, herb height, herb number, herb coverage, herb ground diameter and herb diversity), soil physiochemical characteristics (soil bulk density, pH, water content, soil organ carbon, soil total and available nutrient content) and topographical properties (elevation, aspect and slope). We also analyzed individual and interactive effects (plant–soil, plant–topography, soil–topography, plant–soil–topography) using general linear model (GLM) analysis. Among all plant variables, tree canopy and understory richness had the greatest impact on SMB. The soil variables with the greatest impact on SMB were bulk density and available phosphorus. Elevation was the most important topographic factor affecting SMB. When we considered the interactive effects among plant, soil physicochemical and topographical variables on SMB, a significant interaction effect occurred at a depth of 10–30 cm soil layer. We concluded that individual effects of abiotic and biotic factors significantly affect SMB at 0–10 cm, while the interaction of these factors mainly played roles at 10–30 cm. These results provide a basis for maintaining soil health and productivity using efficient SMB by providing suitable abiotic and biotic habitats.

Keywords