The role and position of iron in 0.8CaZrO3-0.2CaFe2O4
Szczerba Jacek,
Śnieżek Edyta,
Stoch Paweł,
Prorok Ryszard,
Jastrzębska Ilona
Affiliations
Szczerba Jacek
Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
Śnieżek Edyta
Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
Stoch Paweł
Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
Prorok Ryszard
Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
Jastrzębska Ilona
Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH – University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12 617 5139, Fax: +48 12 633 4630
The aim of the study was to characterize the 0.8CaZrO3-0.2CaFe2O4 composite structure with particular emphasis on the role and position of iron in the function of sintering temperature. The paper presents the results of 57Fe Mössbauer effect at room temperature. It was found that the increase of sintering temperature causes an increase in the amount of incorporated iron ions in the CaZrO3-crystal structure. Based on Mössbauer spectroscopy analysis, it was found that three different environments of Fe3+ ions were observed in the obtained materials. Two of them corresponded to CaFe2O4 phase and one was associated with the substitution of Zr4+ by Fe3+ in the CaZrO3 structure.