Environmental Health (Jun 2024)

Serum concentrations of legacy, alternative, and precursor per- and polyfluoroalkyl substances: a descriptive analysis of adult female participants in the MIREC-ENDO study

  • M. M. Borghese,
  • A. Ward,
  • S. MacPherson,
  • K. E. Manz,
  • E. Atlas,
  • M. Fisher,
  • T. E. Arbuckle,
  • J. M. Braun,
  • M. F. Bouchard,
  • J. Ashley-Martin

DOI
https://doi.org/10.1186/s12940-024-01085-z
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Several legacy and emerging per- and polyfluoroalkyl substances (PFAS) have been regulated around the world. There is growing concern over the proliferation of alternative PFAS, as well as PFAS precursors. Biomonitoring data for PFAS are critical for assessing exposure and human health risk. Methods We collected serum samples from 289 adult female participants in a 2018–2021 follow-up study of the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort. Samples were analyzed for 40 PFAS using ultra-performance liquid chromatography–tandem mass spectrometry. For those compounds with > 50% detection, as well as the sum of these compounds, we describe serum concentrations and patterns of exposure according to sociodemographic and obstetrical history characteristics. Results 17 out of 40 PFAS were detected in > 50% of samples with 7 of these detected in > 97% of samples. Median [95th percentile] concentrations (µg/L) were highest for PFOS (1.62 [4.56]), PFOA (0.69 [1.52]), PFNA (0.38 [0.81]), and PFHxS (0.33 [0.92]). Geometric mean concentrations of PFOA and PFHxS were approximately 2-fold lower among those with more children (≥ 3 vs. 1), greater number of children breastfed (≥ 3 vs. ≤ 1), longer lifetime duration of breastfeeding (> 4 years vs. ≤ 9 months), and shorter time since last pregnancy (≤ 4 years vs. > 8 years). We observed similar patterns for PFOS, PFHpS, and the sum of 17 PFAS, though the differences between groups were smaller. Concentrations of PFOA were higher among “White” participants, while concentrations of N-MeFOSE, N-EtFOSE, 7:3 FTCA, and 4:2 FTS were slightly higher among participants reporting a race or ethnicity other than “White”. Concentrations of legacy, alternative, and precursor PFAS were generally similar across levels of age, education, household income, body mass index, and menopausal status. Conclusions We report the first Canadian biomonitoring data for several alternative and precursor PFAS. Our findings suggest that exposure to PFAS, including several emerging alternatives, may be widespread. Our results are consistent with previous studies showing that pregnancy and breastfeeding are excretion pathways for PFAS.

Keywords