Chemosensors (Nov 2021)

Reconfigurable Modular Platform for Prolonged Sensing of Toxic Gases in Particle Polluted Environments

  • Hamid Sadabadi,
  • Ali Bostani,
  • Amin S. Esmaeili

DOI
https://doi.org/10.3390/chemosensors9110328
Journal volume & issue
Vol. 9, no. 11
p. 328

Abstract

Read online

The prolonged sensing of toxic gases in polluted particles and harsh environments is a challenging task that is also in high demand. In this work, the proof of principle of a sensitive, low-cost, and low-maintenance reconfigurable platform for filter-free and continuous ammonia (NH3) sensing in polluted environments is simulated. The platform can be modified for the detection of various toxic gases and includes three main modules: a microfluidic system for in-line continuous dust filtering; a toxic gas adsorption module; and a low-frequency microwave split-ring resonator (SRR). An inertia-based spiral microfluidic system has been designed and optimized through simulation for the in-line filtration of small particles from the intake air. Zeolite Y is selected as the adsorbent in the adsorption module. The adsorption module is a non-metallic thin tube that is filled with zeolite Y powder and precisely fixed at the drilled through-hole into the 3D microwave system. For the sensing module, a low-frequency three-dimensional (3D) split-ring resonator is proposed and optimally designed. A microwave resonator continuously monitors the permittivity of zeolite Y and can detect small permittivity alterations upon the presence of ammonia in the intake air. The microwave resonator is optimized at a frequency range of 2.5–3 GHz toward the detection of ammonia under different ammonia concentrations from 400 to 2800 ppm. The microwave simulation results show a clear contrast of around 4 MHz that shifts at 2.7 GHz for 400 ppm ammonia concentration. The results show the proof of principle of the proposed microfluidic-microwave platform for toxic gas detection.

Keywords