Applied Sciences (Dec 2022)

Calibration and Validation of Global Horizontal Irradiance Clear Sky Models against McClear Clear Sky Model in Morocco

  • Abderrahmane Mendyl,
  • Brighton Mabasa,
  • Houria Bouzghiba,
  • Tamás Weidinger

DOI
https://doi.org/10.3390/app13010320
Journal volume & issue
Vol. 13, no. 1
p. 320

Abstract

Read online

This study calibrated and compared the capabilities of hourly global horizontal irradiance (GHI) clear sky models for six Moroccan locations, using the McClear clear sky model as a reference. Complex clear sky models, namely Bird, Simplified Solis, Ineichen and Perez, and simple clear sky models, namely Adnot–Bourges–Campana–Gicquel (ABCG), Berger–Duffie, and Haurwitz were tested. The SOLCAST satellite-based dataset estimates were validated against the McClear clear sky model. pvlib python was used to configure the models, and ERA5 hourly fractional cloud cover was used to identify clear-sky days. The study period was from 2014 to 2021, and the study sites were in different climatic regions in Morocco. Bar graphs, tables, and quantitative statistical metrics, namely relative mean bias error (rMBE), relative root mean square error (rRMSE), relative mean absolute error (rMAE), and the coefficient of determination (R2), were used to quantify the skill of the clear sky model at different sites. The overall rMBE was negative in 5/6 sites, indicating consistent overestimation of GHI, and positive in Tantan (14.4%), indicating frequent underestimation of GHI. The overall rRMSE varied from 6 to 22%, suggesting strong agreement between clear sky models and the McClear clear sky model. The overall correlation was greater than 0.96, indicating a very strong relationship. Overall, the Bird clear sky model proved to be the most feasible. Complex clear sky models outperformed simple clear sky models. The SOLCAST satellite-based dataset and ERA5 cloud fraction information could well be used with quantifiable certainty as an accurate clear sky model in the study region and in other areas where complex clear sky models’ inputs are not available.

Keywords