Scientific Reports (Oct 2023)

Ganoderic acid C2 exerts the pharmacological effects against cyclophosphamide-induced immunosuppression: a study involving molecular docking and experimental validation

  • Yuchen Liu,
  • Dongsheng Tan,
  • Hong Cui,
  • Jihua Wang

DOI
https://doi.org/10.1038/s41598-023-44394-y
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Triterpenoids, as the main active ingredient of Ganoderma lucidum fermented extract, exert multiple pharmacological activities, including immunomodulatory properties. Our study aimed to reveal the pharmacological effects and potential mechanisms of Ganoderic acid C2 (GAC) against cyclophosphamide (CY)-associated immunosuppression. Target genes were collected from several public databases, including the DisGeNET, Comparative Toxicogenomics Database, GeneCards, and PharmMapper. STRING database was used to construct the protein–protein interaction of network. Subsequently, molecular docking was carried out to visualize the protein-GAC interactions. Experimental validations, including ELISA and qRT-PCR were performed to confirm the pharmacological activities of GAC on CY-induced immunosuppression model. A total of 56 GAC-related targets were identified to be closely associated with CY-induced immunosuppression. Enrichment analyses results revealed that these targets were mainly involved in immune and inflammatory response-related pathways. STAT3 and TNF were identified as the core targets of GAC. Molecular docking indicated that GAC combined well with STAT3 and TNF protein. In addition, animal experiments indicated that GAC improved immunity as well as STAT3 and TNF genes expression in CY-induced immunosuppression, which further verified the prediction through bioinformatics analysis and molecular docking. We successfully revealed the potential therapeutics mechanisms underlying the effect of GAC against CY-induced immunosuppression based on the combination of bioinformatics analysis, molecular docking, and animal experiments. Our findings lay a theoretical foundation for the in-depth development and utilization of Ganoderma lucidum fermentation product in the future, and also provide theoretical guidance for the development of innovative drugs that assist in improving immunity.