eLife (Oct 2018)

Loss of p53 suppresses replication-stress-induced DNA breakage in G1/S checkpoint deficient cells

  • Bente Benedict,
  • Tanja van Harn,
  • Marleen Dekker,
  • Simone Hermsen,
  • Asli Kucukosmanoglu,
  • Wietske Pieters,
  • Elly Delzenne-Goette,
  • Josephine C Dorsman,
  • Eva Petermann,
  • Floris Foijer,
  • Hein te Riele

DOI
https://doi.org/10.7554/eLife.37868
Journal volume & issue
Vol. 7

Abstract

Read online

In cancer cells, loss of G1/S control is often accompanied by p53 pathway inactivation, the latter usually rationalized as a necessity for suppressing cell cycle arrest and apoptosis. However, we found an unanticipated effect of p53 loss in mouse and human G1-checkpoint-deficient cells: reduction of DNA damage. We show that abrogation of the G1/S-checkpoint allowed cells to enter S-phase under growth-restricting conditions at the expense of severe replication stress manifesting as decelerated DNA replication, reduced origin firing and accumulation of DNA double-strand breaks. In this system, loss of p53 allowed mitogen-independent proliferation, not by suppressing apoptosis, but rather by restoring origin firing and reducing DNA breakage. Loss of G1/S control also caused DNA damage and activation of p53 in an in vivo retinoblastoma model. Moreover, in a teratoma model, loss of p53 reduced DNA breakage. Thus, loss of p53 may promote growth of incipient cancer cells by reducing replication-stress-induced DNA damage.

Keywords