Advances in Nonlinear Analysis (Oct 2024)
Normalized solutions for the Choquard equations with critical nonlinearities
Abstract
This study is concerned with the existence of normalized solutions for the Choquard equations with critical nonlinearities −Δu+λu=f(u)+(Iα∗∣u∣2α*)∣u∣2α*−2u,inRN,∫RN∣u∣2dx=a2,\left\{\begin{array}{l}-\Delta u+\lambda u=f\left(u)+\left({I}_{\alpha }\ast {| u| }^{{2}_{\alpha }^{* }}){| u| }^{{2}_{\alpha }^{* }-2}u,\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},\hspace{1.0em}\\ \mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{N}}{| u| }^{2}{\rm{d}}x={a}^{2},\hspace{1.0em}\end{array}\right. where N>2N\gt 2, α∈(0,N)\alpha \in \left(0,N), a>0a\gt 0, and Iα(x){I}_{\alpha }\left(x) is the Riesz potential given by Iα(x)=Aα∣x∣N−αwithAα=ΓN−α22απN2Γα2,{I}_{\alpha }\left(x)=\frac{{A}_{\alpha }}{{| x| }^{N-\alpha }}\hspace{1em}\hspace{0.1em}\text{with}\hspace{0.1em}\hspace{0.33em}{A}_{\alpha }=\frac{\Gamma \left(\phantom{\rule[-0.68em]{}{0ex}},\frac{N-\alpha }{2}\right)}{{2}^{\alpha }{\pi }^{\tfrac{N}{2}}\Gamma \left(\phantom{\rule[-0.68em]{}{0ex}},\frac{\alpha }{2}\right)}, and 2α*=N+αN−2{2}_{\alpha }^{* }=\frac{N+\alpha }{N-2} is the Hardy-Littlewood-Sobolev critical exponent and ff is a subcritical nonlinearity. In the case that ff is L2{L}^{2}-supercritical growth, by means of the Pohozaev manifold method and mountain pass theorem, we obtain a couple of the normalized solution; while in the case f(u)=μ∣u∣q−2uf\left(u)=\mu {| u| }^{q-2}u with 20\mu \gt 0 a parameter, we employ the truncation technique and the genus theory to prove the multiplicity of normalized solutions.
Keywords