Pharmaceutics (Aug 2021)

Consideration of Metabolite Efflux in Radiolabelled Choline Kinetics

  • Yunqing Li,
  • Marianna Inglese,
  • Suraiya Dubash,
  • Chris Barnes,
  • Diana Brickute,
  • Marta Costa Braga,
  • Ning Wang,
  • Alice Beckley,
  • Kathrin Heinzmann,
  • Louis Allott,
  • Haonan Lu,
  • Cen Chen,
  • Ruisi Fu,
  • Laurence Carroll,
  • Eric O. Aboagye

DOI
https://doi.org/10.3390/pharmaceutics13081246
Journal volume & issue
Vol. 13, no. 8
p. 1246

Abstract

Read online

Hypoxia is a complex microenvironmental condition known to regulate choline kinase α (CHKA) activity and choline transport through transcription factor hypoxia-inducible factor-1α (HIF-1α) and, therefore, may confound the uptake of choline radiotracer [18F]fluoromethyl-[1,2-2H4]-choline ([18F]-D4-FCH). The aim of this study was to investigate how hypoxia affects the choline radiotracer dynamics. Three underlying mechanisms by which hypoxia could potentially alter the uptake of the choline radiotracer, [18F]-D4-FCH, were investigated: 18F-D4-FCH import, CHKA phosphorylation activity, and the efflux of [18F]-D4-FCH and its phosphorylated product [18F]-D4-FCHP. The effects of hypoxia on [18F]-D4-FCH uptake were studied in CHKA-overexpressing cell lines of prostate cancer, PC-3, and breast cancer MDA-MB-231 cells. The mechanisms of radiotracer efflux were assessed by the cell uptake and immunofluorescence in vitro and examined in vivo (n = 24). The mathematical modelling methodology was further developed to verify the efflux hypothesis using [18F]-D4-FCH dynamic PET scans from non-small cell lung cancer (NSCLC) patients (n = 17). We report a novel finding involving the export of phosphorylated [18F]-D4-FCH and [18F]-D4-FCHP via HIF-1α-responsive efflux transporters, including ABCB4, when the HIF-1α level is augmented. This is supported by a graphical analysis of human data with a compartmental model (M2T6k + k5) that accounts for the efflux. Hypoxia/HIF-1α increases the efflux of phosphorylated radiolabelled choline species, thus supporting the consideration of efflux in the modelling of radiotracer dynamics.

Keywords