Algorithms (Jul 2023)

Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects

  • Haifeng Jin,
  • Paul M. Goodrum

DOI
https://doi.org/10.3390/a16070348
Journal volume & issue
Vol. 16, no. 7
p. 348

Abstract

Read online

Selecting the appropriate temporary facilities is important for reducing cost and improving the productivity and safety of craft professionals in construction projects. However, the manual planning process for scaffolding systems is typically prone to inefficiencies. This paper aims to develop a knowledge-based framework for a scaffolding decision support system for industry. An integrated two-phase system was established, including a technical evaluation module and a knowledge-based module. First, the system identifies feasible scaffolding alternatives from the database through a rule-based algorithm. Second, a knowledge-based module was designed to assess the alternative performance. The framework effectively generated the ranking of scaffolding alternatives, and the top three influential factors were identified, including the site accessibility, protection to workers and health risk. Thus, an application study of an industrial steel project was proffered to validate the effectiveness of the framework. The proposed framework may help decision-making regarding the implementation of temporary facility planning in industry practices. It has wider applicability because it simultaneously considers site conditions, productivity, safety, and financial benefits, and is designed and implemented through a computerized path. The paper contributes to the industry by developing an integrated decision support system for temporary facilities. Additionally, the practical contribution of this research is the provision of an optimized scaffolding planning method that could be utilized as a guide when implementing the decision support system.

Keywords