Applied Sciences (Mar 2025)
Three-Band Spectral Camera Structure Design Based on the Topology Optimization Method
Abstract
The housing and bracket structure are critical components of multispectral cameras; the mechanical properties significantly affect the stability of the optical system and the imaging quality. At the same time, their weight directly impacts the overall load capacity and functional expansion of the device. In this study, the housing and bracket structure of a three-band camera were optimized based on the initial design. Using a combination of density-based topology optimization and multi-objective genetic algorithms in parametric optimization, redundant structures were removed to achieve a lightweight design. As a result, the total weight of the housing and bracket was reduced from 9.56 kg to 5.51 kg, achieving a 42.4% weight reduction. In the optimized structure, under gravity conditions, the maximum deformation along the z-axis did not exceed 7 nm, and the maximum amplification factor in the dynamic analysis was 1.42. The analysis demonstrates that the optimized housing and bracket exhibit excellent dynamic and static performance, meeting all testing requirements, and, under gravitational conditions, the spot diagram and modulation transfer function effect are negligible. Furthermore, in a static environment, the detection range across all spectral bands reaches 18.5 km, satisfying the mission requirements. This optimization design provides a strong reference for the lightweight design of future optical equipment.
Keywords