Assessment of Fcγ receptor-dependent binding of influenza hemagglutinin vaccine-induced antibodies in a non-human primate model
Yuji Masuta,
Shokichi Takahama,
Takuto Nogimori,
Saya Moriyama,
Yoshimasa Takahashi,
Takuya Yamamoto
Affiliations
Yuji Masuta
Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
Shokichi Takahama
Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
Takuto Nogimori
Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan
Saya Moriyama
Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
Yoshimasa Takahashi
Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
Takuya Yamamoto
Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki City, Osaka 567-0085, Japan; Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan; Department of Virology and Immunology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan; Corresponding author
Summary: Several cross-protective antibodies that recognize a broad range of influenza A virus (IAV) strains are known to have functions in virus elimination such as Fcγ receptor (FcγR)-effector function and neutralizing activity against the head region. Although few studies have used primary cells as effector cells, the FcγR-effector function was evaluated after isolating each cell subset. Herein, we established an original assay system to evaluate purified FI6 IgG-mediated binding to hemagglutinin (HA)-expressing cells by flow cytometry using peripheral blood mononuclear cells from cynomolgus macaques. In addition, we evaluated the FcγR-effector function of IAV vaccine-induced anti-HA antibodies in cynomolgus macaques after administering the split vaccine. We found several cell types, mainly classical monocytes, bound to HA-expressing target cells in an FcγR-dependent manner, that were dominant in the binding of the cell population. Thus, this assay system could facilitate the development of a universal influenza vaccine.