Scientific Reports (Jul 2021)

Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode

  • Shaista Rafique,
  • Imran Rashid,
  • Rehana Sharif

DOI
https://doi.org/10.1038/s41598-021-94404-0
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 8

Abstract

Read online

Abstract In order to replace Pt CE in dye sensitized solar cell (DSSC) with simple and low cost, copper polypyyrol functionalized multiwall carbon nanotubes (Cu-PPy-FWCNTS) nanocomposite CE was fabricated by two step electrodeposition method on the stainless-steel substrate. The surface morphology, electrical conductivity, electrochemical properties of Cu-PPy-FWCNTS nanocomposite CE electrodes were observed by using verity of techniques such as scanning electron microscopy, a four-probe method and electrochemical workstation. The Fourier transform infrared (FTIR) spectroscopy confirms the presence of FMWCNTS into PPy-FMWCNTS nanocomposite and XRD analysis verified the Cu nanostructures had come into being. The cyclic voltammogram and Tafel polarization measurement demonstrated that solution processed Cu-PPy-FWCNTS nanocomposites CE had smaller charge transfer resistance Rct (4.31 Ω cm2) and higher electrocatalytic performance for I3 −/I− redox solution. Finally, the photovoltaic efficiency of DSSC assembled with Cu-PPy-FWCNTS nanocomposite CE and Platinized CE were compared. The results revealed that the photovoltaic efficiency of DSSC with Cu-PPy-FWCNTS nanocomposites CE reached (7.1%), which is superior to Platinized CE (6.4%). The higher photovoltaic efficiency of the Cu-PPy-FMWCNTS film is due to copper nanostructures that lead to higher cathodic current density (2.35 mA/cm2). The simple fabrication method, excellent electrocatalytic and photovoltaic properties permit the Cu-PPy-FWCNTS nanocomposites credible alternative CE to save the cost of DSSC.