IEEE Access (Jan 2023)

A Chinese Calligraphy-Writing Robotic System Based on Image-to-Action Translations and a Hypothesis Generation Net

  • Min-Jie Hsu,
  • Po-Chao Yeh,
  • Yi-Hsing Chien,
  • Cheng-Kai Lu,
  • Wei-Yen Wang,
  • Chen-Chien James Hsu

DOI
https://doi.org/10.1109/ACCESS.2023.3252902
Journal volume & issue
Vol. 11
pp. 25801 – 25816

Abstract

Read online

This paper attempts to use a delta robot’s structure and reliable coordinates to develop a self-learning Chinese calligraphy-writing system that requires precise control. Ideally, to achieve human-like behavior, a delta robot can learn stroke trajectories autonomously and present the stroke beauty of calligraphy characters. Unfortunately, state-of-the-art approaches have not yet considered the presentation of stroke beauty resulting from angles of rotation and tilt of the brush. This paper presents an integrated system consisting of a stroke processing module, a hypothesis generation net (HGN) learning model with self-learning capability, a delta robot, and an image capture module. Our approach utilizes both the stroke trajectories from the stroke processing module and angles information from the HGN learning model to automatically produce five degrees of freedom action instructions. Based on the instructions, the delta robot completes calligraphy writing. Then, the image capture module provides feedback to the writing system for error calculation and coordinate correction. We utilize the mean absolute percentage error to verify the performance of the writing results. A correction algorithm and linear regression were used to improve the error correction results (less than 2% error). After several cycles, the written results approached the target sample finally. Consequently, the written results produced by the delta robot prove that our proposed system with learning ability can write Chinese calligraphy aesthetically.

Keywords