Tropical Medicine and Health (Jul 2024)
Discovery of antimalarial drugs from secondary metabolites in actinomycetes culture library
Abstract
Abstract Background Natural products play a key role as potential sources of biologically active substances for the discovery of new drugs. This study aimed to identify secondary metabolites from actinomycete library extracts that are potent against the asexual stages of Plasmodium falciparum (P. falciparum). Methods Secondary metabolites from actinomycete library extracts were isolated from culture supernatants by ethyl acetate extraction. Comprehensive screening was performed to identify novel antimalarial compounds from the actinomycete library extracts (n = 28). The antimalarial activity was initially evaluated in vitro against chloroquine/mefloquine-sensitive (3D7) and-resistant (Dd2) lines of P. falciparum. The cytotoxicity was then evaluated in primary adult mouse brain (AMB) cells. Results Out of the 28 actinomycete extracts, 17 showed parasite growth inhibition > 50% at a concentration of 50 µg/mL, nine were identified with an IC50 value < 10 µg/mL, and seven suppressed the parasite significantly with an IC50 value < 5 µg/mL. The extracts from Streptomyces aureus strains HUT6003 (Extract ID number: 2), S. antibioticus HUT6035 (8), and Streptomyces sp. strains GK3 (26) and GK7 (27), were found to have the most potent antimalarial activity with IC50 values of 0.39, 0.09, 0.97, and 0.36 µg/mL (against 3D7), and 0.26, 0.22, 0.72, and 0.21 µg/mL (against Dd2), respectively. Among them, Streptomyces antibioticus strain HUT6035 (8) showed the highest antimalarial activity with an IC50 value of 0.09 µg/mL against 3D7 and 0.22 µg/mL against Dd2, and a selective index (SI) of 188 and 73.7, respectively. Conclusion Secondary metabolites obtained from the actinomycete extracts showed promising antimalarial activity in vitro against 3D7 and Dd2 cell lines of P. falciparum with minimal toxicity. Therefore, secondary metabolites obtained from actinomycete extracts represent an excellent starting point for the development of antimalarial drug leads.
Keywords