International Journal of Technology (Oct 2016)
Investigation of Thermal Insulation Properties of Biomass Composites
Abstract
This paper reports on the investigation of thermal properties of Kapok, Coconut fibre and Sugarcane bagasse composite materials using molasses as a binder. The composite materials were moulded into 12 cylindrical samples using Kapok, Bagasse, Coconut fibre, Kapok and Bagasse in the ratios of (70:30; 50:50 and 30:70), Kapok and Coconut fibre in the ratios of (70:30; 50:50 and 30:70), as well as a combination of Kapok, Bagasse and Coconut fibre in ratios of (50:10:40; 50:40:10 and 50:30:20). The sample size is a 60mm diameter with 10mm – 22mm thickness compressed at a constant load of 180N using a Budenberg compression machine. Thermal conductivity and diffusivity tests were carried out using thermocouples and the results were read out on a Digital Multimeter MY64 (Model: MBEB094816), while a Digital fluke K/J thermocouple meter PRD-011 (S/NO 6835050) was used to obtain the temperature measurement for diffusivity. It was observed that of all the twelve samples moulded, Bagasse, Kapok plus Bagasse (50:50), Kapok plus Coconut fibre (50:50) and Kapok plus Bagasse plus Coconut fibre (50:40:10) has the lowest thermal conductivity of 0.0074, 0.0106, 0.0132, and 0.0127 W/(m-K) respectively and the highest thermal resistivity. In this regard, Bagasse has the lowest thermal conductivity followed by Kapok plus Bagasse (50:50), Kapok plus Bagasse plus Coconut fibre (50:40:10) and Kapok plus Coconut fibre (50:50).
Keywords