IEEE Access (Jan 2023)
LoRaline: A Critical Message Passing Line of Communication for Anomaly Mapping in IoV Systems
Abstract
The importance of road safety is felt nowadays more than ever, where various technologies, including self-driving cars, have become abundant. Nowadays, it has more demand to build autonomous and electrical vehicles with information retrieval systems within the received sensory data not only from the local sensors but also the online and live streaming data over networks. To increase road safety dissemination of critical information, including the possibility of an obstacle or danger being in the middle of the road, automotive navigation and control systems are required. A novel method is proposed to make this critical communication possible over a specially designed vehicular ad-hoc network, where natural or urban barriers can prevent signal propagation. The network is implemented using the LoRaWAN interface and SX127x LoRa Radio module. The SX1272MB2xAS is fitted with the SX1272 transceiver, which added to a high-performance FSK/OOK RF transceiver modem. Additionally, LoRa long-range modem provides highly power-efficient communication. For this aim, two new mechanisms have been proposed. The first mechanism enables the nodes to receive data from a suggested communication link. While the second mechanism is designed to extract vital information such as establishing the connection, closing the connection, successful data transmission, errors, etc. The findings demonstrate that the proposed mechanisms have successfully enabled LoRaWAN to operate in IoV environment. The evaluation reveals that metrics such as battery consumption and covering range outperform similar technologies. Finally, this paper proposes a message-passing strategy based on Belief Propagation (BP) which provides more accurate marginal probabilities to overcome the low data rate as a foundation for our future work.
Keywords