Molecules (Feb 2022)

Pilot Quality-Assurance Study of a Third-Generation Batch-Mode Clinical-Scale Automated Xenon-129 Hyperpolarizer

  • Jonathan R. Birchall,
  • Md Raduanul H. Chowdhury,
  • Panayiotis Nikolaou,
  • Yuri A. Chekmenev,
  • Anton Shcherbakov,
  • Michael J. Barlow,
  • Boyd M. Goodson,
  • Eduard Y. Chekmenev

DOI
https://doi.org/10.3390/molecules27041327
Journal volume & issue
Vol. 27, no. 4
p. 1327

Abstract

Read online

We present a pilot quality assurance (QA) study of a clinical-scale, automated, third-generation (GEN-3) 129Xe hyperpolarizer employing batch-mode spin-exchange optical pumping (SEOP) with high-Xe densities (50% natural abundance Xe and 50% N2 in ~2.6 atm total pressure sourced from Nova Gas Technologies) and rapid temperature ramping enabled by an aluminum heating jacket surrounding the 0.5 L SEOP cell. 129Xe hyperpolarization was performed over the course of 700 gas loading cycles of the SEOP cell, simulating long-term hyperpolarized contrast agent production in a clinical lung imaging setting. High levels of 129Xe polarization (avg. %PXe = 51.0% with standard deviation σPXe = 3.0%) were recorded with fast 129Xe polarization build-up time constants (avg. Tb = 25.1 min with standard deviation σTb = 3.1 min) across the first 500 SEOP cell refills, using moderate temperatures of 75 °C. These results demonstrate a more than 2-fold increase in build-up rate relative to previously demonstrated results in a comparable QA study on a second-generation (GEN-2) 129Xe hyperpolarizer device, with only a minor reduction in maximum achievable %PXe and with greater consistency over a larger number of SEOP cell refill processes at a similar polarization lifetime duration (avg. T1 = 82.4 min, standard deviation σT1 = 10.8 min). Additionally, the effects of varying SEOP jacket temperatures, distribution of Rb metal, and preparation and operation of the fluid path are quantified in the context of device installation, performance optimization and maintenance to consistently produce high 129Xe polarization values, build-up rates (Tb as low as 6 min) and lifetimes over the course of a typical high-throughput 129Xe polarization SEOP cell life cycle. The results presented further demonstrate the significant potential for hyperpolarized 129Xe contrast agent in imaging and bio-sensing applications on a clinical scale.

Keywords