Arabian Journal of Chemistry (Dec 2020)

Schiff base stabilized silver nanoparticles as potential sensor for Hg(II) detection, and anticancer and antibacterial agent

  • Aaliya Minhaz,
  • Naeem Khan,
  • Nargis Jamila,
  • Fatima Javed,
  • Muhammad Imran,
  • Shaukat Shujah,
  • Sadiq Noor Khan,
  • Amir Atlas,
  • Muhammad Raza Shah

Journal volume & issue
Vol. 13, no. 12
pp. 8898 – 8908

Abstract

Read online

This study reports a facile synthesis of silver nanoparticles (C3-AgNPs) by chemical route, using C3; 2,2′-((1E,1′E)-(propane-1,3-diylbis(azanylylidene))bis(methanylylidene))diphenol (3) and silver nitrate. The formation of nanoparticles was monitored using UV–Vis spectroscopy by the appearance of typical surface plasmon absorption maxima. The synthesized C3-AgNPs were characterized using Fourier-Transform-infrared (FTIR) and atomic force microscopy (AFM) techniques. In addition, the effect of concentration, temperature, time, pH, and stability in salts solution on C3-AgNPs was determined. From AFM, C3-AgNPs were found polydispersed with average size of 29.93 nm. Furthermore, the study reports C3-AgNPs as sensitive protocol for the detection of toxic metal; Hg(II) in tap water. From ten salts tested, C3-AgNPs demonstrated a sensitive and selective spectrophotometric signal and aggregation induced decrease of surface plasmon resonance (SPR) band. The nanosensor probe displayed a sensitive response to Hg(II) in a wide range of concentrations and pH. In addition, the decrease in SPR band of C3-AgNPs due to Hg(II) was not affected by tap water samples. C3-AgNPs also exhibited a redox catalytic potential in dyes degradation. In biological application, C3-AgNPs exhibited significant anticancer and antibacterial potential of 65 to 94% at 24–72 h, and inhibition zone of 7–18 mm, respectively. Hence, the synthesized C3-AgNPs could have promising application in environmental and pharmacological remediation.

Keywords