Vestnik KRAUNC: Fiziko-Matematičeskie Nauki (Apr 2023)
Задача для смешанного уравнения с дробной степенью оператора Бесселя
Abstract
В последнее время особый интерес представляют уравнения с частными производными, содержащими дифференциальный оператор дробного порядка. Подобные уравнения и задачи для них находят применение в теории вязкой упругости, электрохимии, теории управления, моделировании эпидемий и пандемий и в других различных областях. Настоящая работа посвящена решению дифференциальных уравнений, содержащих оператор Бесселя дробной степени. В статье рассматривается прямое и обратное преобразование Мейера, модифицированное для удобства работы с оператором Бесселя дробной степени. Для рассматриваемого преобразования Мейера получена свертка. Используя преобразования Лапласа и Пуассона получены факторизации прямого и обратного преобразований Мейера. С использованием рассмотренного модифицированного преобразования Мейера находится решение обыкновенного дифференциального уравнения с оператором Бесселя дробной степени. Рассматривается нелокальная краевая задача для смешанного параболо-гиперболческого уравнения, содержащего дробной степени оператор Бесселя. Доказывается, что, при выполнении определенных условий гладкости входных функций задачи и выполнения условия сопряжения на линии раздела областей гиперболичности и параболичности, регулярное решение нелокальной краевой задачи для смешанного параболо-гиперболического уравнения с оператором Бесселя дробной степени существует и единственно.
Keywords