Progress in Earth and Planetary Science (Feb 2024)

Ground subsidence and polygon development due to thermokarst in the Lena-Aldan interfluve, eastern Siberia, revealed by satellite remote sensing data

  • Takahiro Abe,
  • Yoshihiro Iijima

DOI
https://doi.org/10.1186/s40645-024-00610-5
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Thermokarst development is a topographic change in the landscape that is commonly associated with permafrost degradation in ice-rich permafrost regions. The Lena-Aldan interfluvial area in Central Yakutia in eastern Siberia has undergone extensive thermokarst development in the last three decades, particularly in the vicinity of settlements. Despite the negative effects of thermokarst development on the inhabitants of these settlements, no quantitative observation methods have been developed to investigate the surface displacement due to thermokarst development over entire towns. This study utilized interferometric synthetic aperture radar to reveal ground-surface displacement associated with thermokarst near the settlements of selected towns. The findings showed that significant subsidence was detected in disturbed areas (farming and abundant arable land) near the towns. The magnitude of subsidence in the Tyungyulyu and Mayya areas was less than that in Churapcha and Amga. Polygon density in a defined area in each town was examined using high-resolution optical images. The polygon density in Churapcha was considerably lower than that in Mayya, whereas polygonal texture in some areas in Tyungyulyu and Amga was unclear. Spatial frequency analysis using satellite optical images showed clear differences in averaged spectrum models between well-developed and less-developed polygons, which may reflect trough depths and density of vegetation between polygons. Satellite-based subsidence maps and statistics describing polygon development may be useful for evaluating both initial and subsequent stages of thermokarst development.

Keywords