A Comparison of Three-Layer and Single-Layer Small Vascular Grafts Manufactured via the Roto-Evaporation Method
Gualberto Antonio Zumbardo-Bacelis,
Laura Peponi,
Rossana Faride Vargas-Coronado,
Eustolia Rodríguez-Velázquez,
Manuel Alatorre-Meda,
Pascale Chevallier,
Francesco Copes,
Diego Mantovani,
Gustavo A. Abraham,
Juan Valerio Cauich-Rodríguez
Affiliations
Gualberto Antonio Zumbardo-Bacelis
Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
Laura Peponi
Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
Rossana Faride Vargas-Coronado
Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
Eustolia Rodríguez-Velázquez
Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22390, Mexico
Manuel Alatorre-Meda
Centro de Graduados e Investigación en Química-Grupo de Biomateriales y Nanomedicina, CONAHCYT-Tecnológico Nacional de México, Instituto Tecnológico de Tijuana, Tijuana 22510, Mexico
Pascale Chevallier
Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada
Francesco Copes
Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada
Diego Mantovani
Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center, Laval University, Quebec, QC G1V0A6, Canada
Gustavo A. Abraham
Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET). Av. Colón 10850, Mar del Plata B7606BWV, Argentina
Juan Valerio Cauich-Rodríguez
Unidad de Materiales, Centro de Investigación Científica de Yucatán, Calle 43 #130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Mexico
This study used the roto-evaporation technique to engineer a 6 mm three-layer polyurethane vascular graft (TVG) that mimics the architecture of human coronary artery native vessels. Two segmented polyurethanes were synthesized using lysine (SPUUK) and ascorbic acid (SPUAA), and the resulting materials were used to create the intima and adventitia layers, respectively. In contrast, the media layer of the TVG was composed of a commercially available polyurethane, Pearlbond 703 EXP. For comparison purposes, single-layer vascular grafts (SVGs) from individual polyurethanes and a polyurethane blend (MVG) were made and tested similarly and evaluated according to the ISO 7198 standard. The TVG exhibited the highest circumferential tensile strength and longitudinal forces compared to single-layer vascular grafts of lower thicknesses made from the same polyurethanes. The TVG also showed higher suture and burst strength values than native vessels. The TVG withstood up to 2087 ± 139 mmHg and exhibited a compliance of 0.15 ± 0.1%/100 mmHg, while SPUUK SVGs showed a compliance of 5.21 ± 1.29%/100 mmHg, akin to coronary arteries but superior to the saphenous vein. An indirect cytocompatibility test using the MDA-MB-231 cell line showed 90 to 100% viability for all polyurethanes, surpassing the minimum 70% threshold needed for biomaterials deemed cytocompatibility. Despite the non-cytotoxic nature of the polyurethane extracts when grown directly on the surface, they displayed poor fibroblast adhesion, except for SPUUK. All vascular grafts showed hemolysis values under the permissible limit of 5% and longer coagulation times.