Energies (Nov 2022)

Solar Power Forecasting Using CNN-LSTM Hybrid Model

  • Su-Chang Lim,
  • Jun-Ho Huh,
  • Seok-Hoon Hong,
  • Chul-Young Park,
  • Jong-Chan Kim

DOI
https://doi.org/10.3390/en15218233
Journal volume & issue
Vol. 15, no. 21
p. 8233

Abstract

Read online

Photovoltaic (PV) technology converts solar energy into electrical energy, and the PV industry is an essential renewable energy industry. However, the amount of power generated through PV systems is closely related to unpredictable and uncontrollable environmental factors such as solar radiation, temperature, humidity, cloud cover, and wind speed. Particularly, changes in temperature and solar radiation can substantially affect power generation, causing a sudden surplus or reduction in the power output. Nevertheless, accurately predicting the energy produced by PV power generation systems is crucial. This paper proposes a hybrid model comprising a convolutional neural network (CNN) and long short-term memory (LSTM) for stable power generation forecasting. The CNN classifies weather conditions, while the LSTM learns power generation patterns based on the weather conditions. The proposed model was trained and tested using the PV power output data from a power plant in Busan, Korea. Quantitative and qualitative evaluations were performed to verify the performance of the model. The proposed model achieved a mean absolute percentage error of 4.58 on a sunny day and 7.06 on a cloudy day in the quantitative evaluation. The experimental results suggest that precise power generation forecasting is possible using the proposed model according to instantaneous changes in power generation patterns. Moreover, the proposed model can help optimize PV power plant operations.

Keywords