Physical Review X (Apr 2021)

Ultrafast Resonant Interatomic Coulombic Decay Induced by Quantum Fluid Dynamics

  • A. C. LaForge,
  • R. Michiels,
  • Y. Ovcharenko,
  • A. Ngai,
  • J. M. Escartín,
  • N. Berrah,
  • C. Callegari,
  • A. Clark,
  • M. Coreno,
  • R. Cucini,
  • M. Di Fraia,
  • M. Drabbels,
  • E. Fasshauer,
  • P. Finetti,
  • L. Giannessi,
  • C. Grazioli,
  • D. Iablonskyi,
  • B. Langbehn,
  • T. Nishiyama,
  • V. Oliver,
  • P. Piseri,
  • O. Plekan,
  • K. C. Prince,
  • D. Rupp,
  • S. Stranges,
  • K. Ueda,
  • N. Sisourat,
  • J. Eloranta,
  • M. Pi,
  • M. Barranco,
  • F. Stienkemeier,
  • T. Möller,
  • M. Mudrich

DOI
https://doi.org/10.1103/PhysRevX.11.021011
Journal volume & issue
Vol. 11, no. 2
p. 021011

Abstract

Read online Read online

Interatomic processes play a crucial role in weakly bound complexes exposed to ionizing radiation; therefore, gaining a thorough understanding of their efficiency is of fundamental importance. Here, we directly measure the timescale of interatomic Coulombic decay (ICD) in resonantly excited helium nanodroplets using a high-resolution, tunable, extreme ultraviolet free-electron laser. Over an extensive range of droplet sizes and laser intensities, we discover the decay to be surprisingly fast, with decay times as short as 400 fs, nearly independent of the density of the excited states. Using a combination of time-dependent density functional theory and ab initio quantum chemistry calculations, we elucidate the mechanisms of this ultrafast decay process, where pairs of excited helium atoms in one droplet strongly attract each other and form merging void bubbles, which drastically accelerates ICD.