Researches in Mathematics (Jul 2019)

On the Landau-Kolmogorov inequality between $\| f' \|_{\infty}$, $\| f \|_{\infty}$ and $\| f''' \|_1$

  • D. Skorokhodov

DOI
https://doi.org/10.15421/241906
Journal volume & issue
Vol. 27, no. 1
pp. 55 – 66

Abstract

Read online

We solve the Landau-Kolmogorov problem on finding sharp additive inequalities that estimate $\| f' \|_{\infty}$ in terms of $\| f \|_{\infty}$ and $\| f''' \|_1$. Simultaneously we solve related problems of the best approximation of first order differentiation operator $D^1$ by linear bounded ones and the best recovery of operator $D^1$ on elements of a class given with error.

Keywords