Frontiers in Earth Science (Sep 2021)

Characteristics of Shale Wettability by Contact Angle and Its Influencing Factors: A Case Study in Songliao

  • Haitao Xue,
  • Zhentao Dong,
  • Shansi Tian,
  • Shuangfang Lu,
  • Ce An,
  • Yuan Zhou,
  • Boheng Li,
  • Xiaoyi Xin

DOI
https://doi.org/10.3389/feart.2021.736938
Journal volume & issue
Vol. 9

Abstract

Read online

Wettability is a significant factor in the exploration and development of shale oil. Currently, shale wettability has yet to reach a unified understanding. The contact angle is widely used in the study of shale wettability. However, the pre-treatment of the shale profoundly affects the contact angle. In this paper, the contact angle errors introduced by the pre-treatment of samples are discussed. Shale wettability is influenced by many factors, and there is not yet a systematic study of its influencing factors. Based on the above issues, the shale of the northern Songliao Basin was taken as the subject. The wettability of the different lithofacies is characterized by an improved contact angle method. The compositional characteristics of the shales and oil in the study area were analyzed. Fresh minerals, a single component of oil, and different temperature/pressure conditions were set up to investigate the influencing factors of shale wettability. The studies show that Organic matter abundance and thermal maturity have a positive correlation with oil-wet. Siliceous minerals are positively correlated with water-wet. Carbonate and clay minerals are negatively correlated with water-wet. The mineralogical composition of the shale, the composition of the oil, the characteristics of the aqueous media, the asphaltene deposits on the surface, temperature, and pressure all impact wettability. The affinity of minerals for hydrocarbons is iron minerals > carbonate minerals > clay minerals > siliceous minerals. Minerals are more hydrophilic at low salinity conditions. The deposition of non-hydrocarbons and asphaltenes renders the surface oleophilic. Increasing temperatures will reduce the hydrophilicity of the “oil-water-rock”.

Keywords