Membranes (Mar 2022)

Preparation and Dielectric Sensitivity of Polyurethane Composite Fiber Membrane Filled with BaTiO<sub>3</sub>

  • Gang Lu,
  • Changgeng Shuai,
  • Yinsong Liu,
  • Xue Yang,
  • Xiaoyang Hu

DOI
https://doi.org/10.3390/membranes12040364
Journal volume & issue
Vol. 12, no. 4
p. 364

Abstract

Read online

Polyurethane dielectric elastomer (PUDE) is considered a potential underwater flexible actuator material due to its excellent designability and environmental tolerance at the molecular level. Currently, the application of the polyurethane elastomer as an actuating material is constrained by such problems as the conflict between various properties such as dielectric properties and modulus and the low level of dielectric sensitivity. This is a common challenge facing polyurethane dielectric research related to the uneven distribution of dielectric fillers in the matrix. Besides, another challenge for the academic circles is the easy agglomeration of micro and nanofillers. Given the above-mentioned background of the application and technical problems, the coaxial electrospinning technology is proposed in this paper. The polyurethane fiber network is constructed with the preferred hydrolysis resistant polyether-Diphenylmethane diisocyanate (MDI) thermoplastic polyurethane elastomer as the matrix material. Dispersed by ultrasound, the micro nano dielectric filler is integrated into polyurethane fiber through the coaxial dual-channel design. Additionally, directional constraint molding is conducted to improve the agglomeration of small-scale particles induced by the loss of mechanical energy in traditional blending. After characterization, the distribution of BaTiO3 particles in the fiber bundle is relatively uniform. Compared to the polyurethane dielectric composites prepared by traditional blending (BaTiO3-Dielectric Elastomer, BaTiO3-DE), the dielectric sensitivity factor of the polyurethane composite fiber membrane (BaTiO3-Dielectric Elastomer Membrane, BaTiO3-DEM) is enhanced by over 25%; the electrostrictive strain of BaTiO3-DEM is boosted by least 10%.

Keywords