Scientific Reports (Sep 2024)
Statistical and machine learning models for predicting spalling in CRCP
Abstract
Abstract Continuously reinforced concrete pavement (CRCP), crucial for the resilience of transportation infrastructure owing to its continuous steel reinforcement, confronts a critical challenge in the form of spalling—a distress phenomenon posing a threat to pavement durability and overall structural integrity. The detachment or breakage of concrete from the surface compromises CRCP’s functionality and raises safety concerns and escalating maintenance costs. To address this pressing issue, our study investigates the multifaceted factors influencing spalling, employing a comprehensive approach that integrates statistical and machine learning techniques for predictive modeling. Descriptive statistics meticulously profile the dataset, emphasizing age, thickness, precipitation, temperature, and traffic parameters. Regression analysis unveils key relationships, emphasizing the significance of age, annual temperature, annual precipitation, maximum humidity, and the initial International Roughness Index (IRI) as influential factors. The correlation matrix heatmap guides feature selection, elucidating intricate interdependencies. Simultaneously, feature importance analysis identifies age, Average Annual Daily Traffic (AADT), and total pavement thickness as crucial contributors to spalling. In machine learning, adopting models, including Gaussian Process Regression and ensemble tree models, is grounded in their diverse capabilities and suitability for the complex task at hand. Their varying predictive accuracies underscore the importance of judicious model selection. This research advances pavement engineering practices by offering nuanced insights into factors influencing spalling in CRCP, refining our understanding of spalling influences. Consequently, the study not only opens avenues for developing improved predictive methodologies but also enhances the durability of CRCP infrastructure, addressing broader implications for informed decision-making in transportation infrastructure management. The selection of Gaussian Process Regression and ensemble tree models stems from their adaptability to capture intricate relationships within the dataset, and their comparative performance provides valuable insights into the diverse predictive capabilities of these models in the context of CRCP spalling.
Keywords