South African Journal of Chemical Engineering (Apr 2025)
Crystallographic defects induced F-Center and optical enhancements in CeO2-TiO2 nanocomposites
Abstract
This study reports the synthesis and characterization of CeO2-TiO2 nanocomposites, focusing on the crystallography and defects in enhancing optical properties. Nanocomposites with varying concentrations of CeO2 (0–5 mol %) were synthesized using a facile ultrasonic and thermal method. The sample was characterized using several techniques, including XRD, FT-IR, SEM, EDS, UV–Vis spectroscopy, and PL. The crystallite, strain, and dislocation density were estimated based on the XRD analysis. FT-IR spectra refer to CO2 adsorption in the composites. The Dynamic Light Scattering (DLS) exhibits a smaller diameter with more CeO2 content. The incorporation of 5 mol % CeO2 led to a significant reduction in the bandgap from 3.00 eV to 2.24 eV, enabling enhanced absorption in the visible light range. As observed through photoluminescence analysis, F-center defects improved optical density, making the material potential in visible-light-driven photonic technologies. The results suggest that CeO2-TiO2 nanocomposites with abundant F-center defects offer novel opportunities in optical devices and coloration improvement.
Keywords