Pharmaceuticals (Jul 2022)

Identification of NAPRT Inhibitors with Anti-Cancer Properties by In Silico Drug Discovery

  • Moustafa S. Ghanem,
  • Irene Caffa,
  • Alberto Del Rio,
  • Jorge Franco,
  • Marco Daniele Parenti,
  • Fiammetta Monacelli,
  • Michele Cea,
  • Amr Khalifa,
  • Aimable Nahimana,
  • Michel A. Duchosal,
  • Silvia Ravera,
  • Nadia Bertola,
  • Santina Bruzzone,
  • Alessio Nencioni,
  • Francesco Piacente

DOI
https://doi.org/10.3390/ph15070848
Journal volume & issue
Vol. 15, no. 7
p. 848

Abstract

Read online

Depriving cancer cells of sufficient NAD levels, mainly through interfering with their NAD-producing capacity, has been conceived as a promising anti-cancer strategy. Numerous inhibitors of the NAD-producing enzyme, nicotinamide phosphoribosyltransferase (NAMPT), have been developed over the past two decades. However, their limited anti-cancer activity in clinical trials raised the possibility that cancer cells may also exploit alternative NAD-producing enzymes. Recent studies show the relevance of nicotinic acid phosphoribosyltransferase (NAPRT), the rate-limiting enzyme of the Preiss–Handler NAD-production pathway for a large group of human cancers. We demonstrated that the NAPRT inhibitor 2-hydroxynicotinic acid (2-HNA) cooperates with the NAMPT inhibitor FK866 in killing NAPRT-proficient cancer cells that were otherwise insensitive to FK866 alone. Despite this emerging relevance of NAPRT as a potential target in cancer therapy, very few NAPRT inhibitors exist. Starting from a high-throughput virtual screening approach, we were able to identify and annotate two additional chemical scaffolds that function as NAPRT inhibitors. These compounds show comparable anti-cancer activity to 2-HNA and improved predicted aqueous solubility, in addition to demonstrating favorable drug-like profiles.

Keywords