eLife (Jul 2018)

Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency

  • Kalina T Haas,
  • Benjamin Compans,
  • Mathieu Letellier,
  • Thomas M Bartol,
  • Dolors Grillo-Bosch,
  • Terrence J Sejnowski,
  • Matthieu Sainlos,
  • Daniel Choquet,
  • Olivier Thoumine,
  • Eric Hosy

DOI
https://doi.org/10.7554/eLife.31755
Journal volume & issue
Vol. 7

Abstract

Read online

The nanoscale organization of neurotransmitter receptors regarding pre-synaptic release sites is a fundamental determinant of the synaptic transmission amplitude and reliability. How modifications in the pre- and post-synaptic machinery alignments affects synaptic currents, has only been addressed with computer modelling. Using single molecule super-resolution microscopy, we found a strong spatial correlation between AMPA receptor (AMPAR) nanodomains and the post-synaptic adhesion protein neuroligin-1 (NLG1). Expression of a truncated form of NLG1 disrupted this correlation without affecting the intrinsic AMPAR organization, shifting the pre-synaptic release machinery away from AMPAR nanodomains. Electrophysiology in dissociated and organotypic hippocampal rodent cultures shows these treatments significantly decrease AMPAR-mediated miniature and EPSC amplitudes. Computer modelling predicts that ~100 nm lateral shift between AMPAR nanoclusters and glutamate release sites induces a significant reduction in AMPAR-mediated currents. Thus, our results suggest the synapses necessity to release glutamate precisely in front of AMPAR nanodomains, to maintain a high synaptic responses efficiency.

Keywords