Biogeosciences (Sep 2022)

Acidification, deoxygenation, and nutrient and biomass declines in a warming Mediterranean Sea

  • M. Reale,
  • G. Cossarini,
  • P. Lazzari,
  • T. Lovato,
  • G. Bolzon,
  • S. Masina,
  • C. Solidoro,
  • S. Salon

DOI
https://doi.org/10.5194/bg-19-4035-2022
Journal volume & issue
Vol. 19
pp. 4035 – 4065

Abstract

Read online

The projected warming, nutrient decline, changes in net primary production, deoxygenation and acidification of the global ocean will affect marine ecosystems during the 21st century. Here, the climate change-related impacts on the marine ecosystems of the Mediterranean Sea in the middle and at the end of the 21st century are assessed using high-resolution projections of the physical and biogeochemical state of the basin under Representative Concentration Pathways (RCPs) 4.5 and 8.5. In both scenarios, the analysis shows changes in the dissolved nutrient contents of the euphotic and intermediate layers of the basin, net primary production, phytoplankton respiration and carbon stock (including phytoplankton, zooplankton, bacterial biomass and particulate organic matter). The projections also show uniform surface and subsurface reductions in the oxygen concentration driven by the warming of the water column and by the increase in ecosystem respiration as well as an acidification signal in the upper water column linked to the increase in the dissolved inorganic carbon content of the water column due to CO2 absorption from the atmosphere and the increase in respiration. The projected changes are stronger in the RCP8.5 (worst-case) scenario and, in particular, in the eastern Mediterranean due to the limited influence of the exchanges in the Strait of Gibraltar in that part of the basin. On the other hand, analysis of the projections under the RCP4.5 emission scenario shows a tendency to recover the values observed at the beginning of the 21st century for several biogeochemical variables in the second half of the period. This result supports the idea – possibly based on the existence in a system such as the Mediterranean Sea of a certain buffer capacity and renewal rate – that the implementation of policies for reducing CO2 emission could indeed be effective and could contribute to the foundation of ocean sustainability science and policies.