Cell Reports (Sep 2018)
Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport
Abstract
Summary: The proper assembly of neural circuits depends on the process of synaptogenesis, or the formation of synapses between partner neurons. Using the dopaminergic PDE neurons in C. elegans, we developed an in vivo system to study the earliest steps of the formation of en passant presynaptic specializations behind an extending growth cone. We find that presynaptic materials coalesce into puncta in as little as a few minutes and that both synaptic vesicle (SV) and active zone (AZ) proteins arrive nearly simultaneously at the nascent sites of synapse formation. We show that precise regulation of UNC-104/Kinesin-3 determines the distribution of SV proteins along the axon. The localization of AZ proteins to en passant puncta, however, is largely independent of the major axonal kinesins: UNC-104/Kinesin-3 and UNC-116/Kinesin-1. Moreover, AZ proteins play a crucial role in recruiting and tethering SV precursors (SVPs). : Lipton et al. explore the initial steps of synapse formation in vivo. They find that clustering of major presynaptic material occurs extremely rapidly (<5 min). Both synaptic vesicle precursors and active zone proteins accumulate simultaneously at developing puncta. Precise regulation of the Kinesin-3 activation state strongly influences the positioning of vesicles along the axon during development. Keywords: synaptogenesis, axon transport, active zones, kinesin