Carbon Capture Science & Technology (Dec 2024)

Hypercrosslinked natural biopolymers with quasi-unimodal micropores for carbon capture

  • Liang Ding,
  • Yue Wu,
  • Guanchu Lu,
  • Yixuan Zhang,
  • Mariolino Carta,
  • Xianfeng Fan,
  • Cher Hon Lau

Journal volume & issue
Vol. 13
p. 100305

Abstract

Read online

Ultra-microporous solid sorbents with high CO2 adsorption capacities and gas selectivity are preferred for carbon capture. Here we deliver such sorbents via a combination of narrow micropores, lack of mesopores and an abundance of CO2-philic functional groups. This was achieved by crosslinking lignin waste obtained from a local paper factory, in Lewis's acid deep eutectic solvents (DESs) such as [ChCl][ZnCl2]2 and [ChCl][FeCl3]2, varying crosslinker types and optimizing experimental parameters. Hypercrosslinked polymers (HCPs) prepared in [ChCl][FeCl3]2 with 1,4-dichloroxylene crosslinkers comprised quasi-unimodal, ultra-narrow micropores. At 298 K, 1 bar, and using a gas mixture comprising 15 vol.% CO2 and 85 vol.% N2 (similar to post-combustion flue gas), the CO2 adsorption capacity and CO2/N2 selectivity of this HCP reached 18.1 cm3 g−1 and 835, respectively. Deployed in temperature swing adsorption and evaluated for vacuum pressure swing adsorption, the CO2 recovery rates of this HCP were >87 %, outperforming commercial solid sorbents such as zeolite 13X and PSAO2 HP Molsiv™. The optimization of sorbent microporosity with CO2-philic functional groups could pave the route towards developing bio-derived solid sorbents for carbon capture.

Keywords