International Journal of Extreme Manufacturing (Jan 2024)

High-performance liquid metal electromagnetic actuator fabricated by femtosecond laser

  • Yiyu Chen,
  • Hao Wu,
  • Rui Li,
  • Shaojun Jiang,
  • Shuneng Zhou,
  • Zehang Cui,
  • Yuan Tao,
  • Xinyuan Zheng,
  • Qianqian Zhang,
  • Jiawen Li,
  • Guoqiang Li,
  • Dong Wu,
  • Jiaru Chu,
  • Yanlei Hu

DOI
https://doi.org/10.1088/2631-7990/ad23ee
Journal volume & issue
Vol. 6, no. 2
p. 025503

Abstract

Read online

Small-scale electromagnetic soft actuators are characterized by a fast response and simple control, holding prospects in the field of soft and miniaturized robotics. The use of liquid metal (LM) to replace a rigid conductor inside soft actuators can reduce the rigidity and enhance the actuation performance and robustness. Despite research efforts, challenges persist in the flexible fabrication of LM soft actuators and in the improvement of actuation performance. To address these challenges, we developed a fast and robust electromagnetic soft microplate actuator based on a laser-induced selective adhesion transfer method. Equipped with unprecedentedly thin LM circuit and customized low Young’s modulus silicone rubber (1.03 kPa), our actuator exhibits an excellent deformation angle (265.25°) and actuation bending angular velocity (284.66 rad·s ^−1 ). Furthermore, multiple actuators have been combined to build an artificial gripper with a wide range of functionalities. Our actuator presents new possibilities for designing small-scale artificial machines and supports advancements in ultrafast soft and miniaturized robotics.

Keywords