Gaoyuan qixiang (Jun 2024)

Research on Runoff Simulation over the Source Area of the Yellow River based on the Multiple Precipitation Products

  • Xiaoyue LI,
  • Jun WEN,
  • Yan XIE,
  • Yaling CHEN,
  • Yixuan CHEN,
  • Xiangyu GE

DOI
https://doi.org/10.7522/j.issn.1000-0534.2023.00086
Journal volume & issue
Vol. 43, no. 3
pp. 570 – 582

Abstract

Read online

The Source Area of the Yellow River is located in the northeastern part of the Qinghai-Xizang Plateau, and the meteorological stations are sparsely distributed in this basin, the study of the applicability of various precipitation data products has an important values in promoting the hydrological modeling in the basin.Based on the China Meteorological Assimilation Datasets for SWAT model Version1.1 (CMADS V1.1), the Tropical Rainfall Measurement Mission (TRMM) precipitation datasets (3B42 Version7) and the Soil and Water Assessment Tool (SWAT) driven by these precipitation data, respectively, and the SWAT-CUP (SWAT Calibration and Uncertainty Program) and SUFI-2 (Sequential Uncertainty Fitting2) algorithm 27 sensitivity parameters were rate in simulating the variation of multi-year monthly average runoff, the simulated results were compared with the observations to evaluate the accuracy of CMADS and TRMM 3B42 precipitation data products and the applicability of SWAT model were evaluated in the Source Area of the Yellow River source area.The results show that: (1) The distribution of all three precipitation datasets showed an increasing trend from the west to the east, and TRMM 3B42 was in better agreement with the measured precipitation than CMADS data set in terms of annual and monthly variation.(2) The sensitivity analysis of the parameters showed that the sensitivity degree of SCS (Soil Conservation Service) runoff curve number, groundwater lagging coefficient, and soil evaporation compensation coefficient were stronger than that of the others.(3) The simulated runoff by using the CMADS and TRMM 3B42 precipitation datasets had better results than that by using the measured precipitation data, with the correlation coefficients R2 of 0.93, 0.92 and 0.88 for the rate period at the three hydrological stations, respectively, while the results of the TRMM 3B42 simulation were the next best, with the coefficients of correlation (R) of the rate-period and validation-period of above 0.80, and the Nash-Sutcliffe efficiency coefficient (NSE) of the simulations is above 0.50.This research demonstrates the applicability of CMADS datasets and SWAT model for runoff simulation in high-altitude areas with complex landscape types and sensitive to climate change, and provides a replacement solution for improving the hydrological models in areas where there are sparely meteorological stations.

Keywords