PLoS Pathogens (Oct 2022)

Free ISG15 inhibits Pseudorabies virus infection by positively regulating type I IFN signaling.

  • Huimin Liu,
  • Chen Li,
  • Wenfeng He,
  • Jing Chen,
  • Guoqing Yang,
  • Lu Chen,
  • Hongtao Chang

DOI
https://doi.org/10.1371/journal.ppat.1010921
Journal volume & issue
Vol. 18, no. 10
p. e1010921

Abstract

Read online

Interferon-stimulated gene 15 (ISG15) is strongly upregulated during viral infections and exerts pro-viral or antiviral actions. While many viruses combat host antiviral defenses by limiting ISG expression, PRV infection notably increases expression of ISG15. However, studies on the viral strategies to regulate ISG15-mediated antiviral responses are limited. Here, we demonstrate that PRV-induced free ISG15 and conjugated proteins accumulation require viral gene expression. Conjugation inhibition assays showed that ISG15 imposes its antiviral effects via unconjugated (free) ISG15 and restricts the viral release. Knockout of ISG15 in PK15 cells interferes with IFN-β production by blocking IRF3 activation and promotes PRV replication. Mechanistically, ISG15 facilitates IFNα-mediated antiviral activity against PRV by accelerating the activation and nuclear translocation of STAT1 and STAT2. Furthermore, ISG15 facilitated STAT1/STAT2/IRF9 (ISGF3) formation and ISGF3-induced IFN-stimulated response elements (ISRE) activity for efficient gene transcription by directly interacting with STAT2. Significantly, ISG15 knockout mice displayed enhanced susceptibility to PRV, as evidenced by increased mortality and viral loads, as well as more severe pathology caused by excessive production of the inflammatory cytokines. Our studies establish the importance of free ISG15 in IFNα-induced antiviral immunity and in the control of viral infections.