Remote Sensing (Jun 2019)

An Unsupervised SAR Change Detection Method Based on Stochastic Subspace Ensemble Learning

  • Bin Cui,
  • Yonghong Zhang,
  • Li Yan,
  • Jujie Wei,
  • Hong’an Wu

DOI
https://doi.org/10.3390/rs11111314
Journal volume & issue
Vol. 11, no. 11
p. 1314

Abstract

Read online

As synthetic aperture radar (SAR) is playing an increasingly important role in Earth observations, many new methods and technologies have been proposed for change detection using multi-temporal SAR images. Especially with the development of deep learning, numerous methods have been proposed in recent years. However, the requirement to have a certain number of high-quality samples has become one of the main reasons for the limited development of these methods. Thus, in this paper, we propose an unsupervised SAR change detection method that is based on stochastic subspace ensemble learning. The proposed method consists of two stages: The first stage involves the automatic determination of high-confidence samples, which includes a fusion strategy and a refinement process; and the second stage entails using the stochastic subspace ensemble learning module, which contains three steps: obtaining the subsample sets, establishing and training a two-channel network, and applying the prediction results and an ensemble strategy. The subsample sets are used to solve the problem of imbalanced samples. The two-channel networks are used to extract high-dimensional features and learn the relationship between the neighborhood of the pixels in the original images and the labels. Finally, by using an ensemble strategy, the results predicted by all patches reclassified in each network are integrated as the detection result. The experimental results of different SAR datasets prove the effectiveness and the feasibility of the proposed method.

Keywords