PLoS ONE (Oct 2010)

Inhibition of Plasmodium falciparum field isolates-mediated endothelial cell apoptosis by Fasudil: therapeutic implications for severe malaria.

  • Estelle S Zang-Edou,
  • Ulrick Bisvigou,
  • Zacharie Taoufiq,
  • Faustin Lékoulou,
  • Jean Bernard Lékana-Douki,
  • Yves Traoré,
  • Dominique Mazier,
  • Fousseyni S Touré-Ndouo

DOI
https://doi.org/10.1371/journal.pone.0013221
Journal volume & issue
Vol. 5, no. 10
p. e13221

Abstract

Read online

Plasmodium falciparum infection can abruptly progress to severe malaria, a life-threatening complication resulting from sequestration of parasitized red blood cells (PRBC) in the microvasculature of various organs such as the brain and lungs. PRBC adhesion can induce endothelial cell (EC) activation and apoptosis, thereby disrupting the blood-brain barrier. Moreover, hemozoin, the malarial pigment, induces the erythroid precursor apoptosis. Despite the current efficiency of antimalarial drugs in killing parasites, severe malaria still causes up to one million deaths every year. A new strategy targeting both parasite elimination and EC protection is urgently needed in the field. Recently, a rho-kinase inhibitor Fasudil, a drug already in clinical use in humans for cardio- and neuro-vascular diseases, was successfully tested on laboratory strains of P. falciparum to protect and to reverse damages of the endothelium. We therefore assessed herein whether Fasudil would have a similar efficiency on P. falciparum taken directly from malaria patients using contact and non-contact experiments. Seven (23.3%) of 30 PRBC preparations from different patients were apoptogenic, four (13.3%) acting by cytoadherence and three (10%) via soluble factors. None of the apoptogenic PRBC preparations used both mechanisms indicating a possible mutual exclusion of signal transduction ligand. Three PRBC preparations (42.9%) induced EC apoptosis by cytoadherence after 4 h of coculture ("rapid transducers"), and four (57.1%) after a minimum of 24 h ("slow transducers"). The intensity of apoptosis increased with time. Interestingly, Fasudil inhibited EC apoptosis mediated both by cell-cell contact and by soluble factors but did not affect PRBC cytoadherence. Fasudil was found to be able to prevent endothelium apoptosis from all the P. falciparum isolates tested. Our data provide evidence of the strong anti-apoptogenic effect of Fasudil and show that endothelial cell-P. falciparum interactions are more complicated than previously thought. These findings may warrant clinical trials of Fasudil in severe malaria management.