Quantum (Dec 2020)
Multi-spin counter-diabatic driving in many-body quantum Otto refrigerators
Abstract
Quantum refrigerators pump heat from a cold to a hot reservoir. In the few-particle regime, counter-diabatic (CD) driving of, originally adiabatic, work-exchange strokes is a promising candidate to overcome the bottleneck of vanishing cooling power. Here, we present a finite-time many-body quantum refrigerator that yields finite cooling power at high coefficient of performance, that considerably outperforms its non-adiabatic counterpart. We employ multi-spin CD driving and numerically investigate the scaling behavior of the refrigeration performance with system size. We further prove that optimal refrigeration via the exact CD protocol is a catalytic process.