Communications Materials (Mar 2025)
Closed-loop enhancement of plant photosynthesis via biomass-derived carbon dots in biohybrids
Abstract
Abstract Improving photosynthetic efficiency is pivotal for biomanufacturing and agriculture. Despite the progress on photosynthetic biohybrids integrating biocatalysts with materials, nanomaterials with increasing energy-efficiency as well as great biocompatibility and cost-effectiveness are needed. Here, we present a closed-loop strategy using biomass-derived carbon dots (CDs) for improving photosynthesis. We demonstrate that the CDs act as both light converters and photosensitizers by converting solar irradiation to red light and supplying light-excited electrons into the photosynthetic electron transfer chain. Biohybrids incorporating CDs and cyanobacteria or plant exhibited increased photosynthetic efficiency, when compared with the photosynthetic organism only. The cyanobacterial CO2-fixation rate and CO2-to-glycerol production were increased 2.4-fold and 2.2-fold, respectively, while Arabidopsis thaliana displayed a 1.8-fold increase in the fresh weight of the plant. Techno-economic analysis showed the competitive advantage of biomass-derived CDs over other nanomaterials. These CDs hold potential applications in future sustainable agriculture and solar-powered biomanufacturing.