BMC Bioinformatics (May 2021)

IPD 2.0: To derive insights from an evolving SARS-CoV-2 genome

  • Sanket Desai,
  • Aishwarya Rane,
  • Asim Joshi,
  • Amit Dutt

DOI
https://doi.org/10.1186/s12859-021-04172-x
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Rapid analysis of SARS-CoV-2 genomic data plays a crucial role in surveillance and adoption of measures in controlling spread of Covid-19. Fast, inclusive and adaptive methods are required for the heterogenous SARS-CoV-2 sequence data generated at an unprecedented rate. Results We present an updated version of the SARS-CoV-2 analysis module of our automated computational pipeline, Infectious Pathogen Detector (IPD) 2.0, to perform genomic analysis to understand the variability and dynamics of the virus. It adopts the recent clade nomenclature and demonstrates the clade prediction accuracy of 92.8%. IPD 2.0 also contains a SARS-CoV-2 updater module, allowing automatic upgrading of the variant database using genome sequences from GISAID. As a proof of principle, analyzing 208,911 SARS-CoV-2 genome sequences, we generate an extensive database of 2.58 million sample-wise variants. A comparative account of lineage-specific mutations in the newer SARS-CoV-2 strains emerging in the UK, South Africa and Brazil and data reported from India identify overlapping and lineages specific acquired mutations suggesting a repetitive convergent and adaptive evolution. Conclusions A novel and dynamic feature of the SARS-CoV-2 module of IPD 2.0 makes it a contemporary tool to analyze the diverse and growing genomic strains of the virus and serve as a vital tool to help facilitate rapid genomic surveillance in a population to identify variants involved in breakthrough infections. IPD 2.0 is freely available from http://www.actrec.gov.in/pi-webpages/AmitDutt/IPD/IPD.html and the web-application is available at http://ipd.actrec.gov.in/ipdweb/ .

Keywords