Agronomy (Sep 2022)

Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions

  • José María De la Rosa,
  • Paloma Campos,
  • Antonio Diaz-Espejo

DOI
https://doi.org/10.3390/agronomy12102321
Journal volume & issue
Vol. 12, no. 10
p. 2321

Abstract

Read online

The effects of olive waste biochar and green compost as soil amendments on soil physical properties, as well as on physiological parameters and yield of a super-intensive olive crop cultivated under deficit irrigation conditions, were investigated in south-west Spain during the 2021 growing season. Thus, soils were amended with 40 t ha−1 of olive pomace waste biochar, green-compost, or a biochar-compost mixture (50% w/w), and no amended plots were used as control. On a bi-monthly basis, soil pH, water holding capacity, humidity, and resistance to penetrability were determined. In addition, various indicators of the physiological status and water stress of the plant were also monitored. Finally, the olive yield per tree was measured. Results showed that biochar application was the most effective amendment for increasing soil moisture and reducing soil compaction. The latter was evidenced by the significant reduction of the resistance to the penetrability of the amended soils. Plants of the amended plots showed better leaf water potential. In addition, values of the net photosynthesis rate, the average intrinsic water-use efficiency, and the maximum rate of electron transport in the time before the harvest improved significantly in the trees from the biochar-amended plots, for which olive fruit yields increased by about 15% in comparison with the other treatments. Nevertheless, the estimated net oil yield per tree was similar because the olives from the biochar-amended trees contained more moisture. This field trial shows for the first time that by providing the soil with biochar from olive crop waste as an organic amendment, having high water retention capacity, porosity, and stability, it would be possible to reduce the irrigation water needed and maintain plant yields.

Keywords