Scientific Reports (Oct 2022)

Intravenous infusion of bone marrow-derived mesenchymal stem cells improves tissue perfusion in a rat hindlimb ischemia model

  • Shusaku Maeda,
  • Takuji Kawamura,
  • Masanori Sasaki,
  • Kazuo Shimamura,
  • Takashi Shibuya,
  • Akima Harada,
  • Osamu Honmou,
  • Yoshiki Sawa,
  • Shigeru Miyagawa

DOI
https://doi.org/10.1038/s41598-022-18485-1
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Intravenous infusion of stem cells is a minimally invasive cellular delivery method, though a few have been reported in a critical limb-threatening ischemia (CLTI) animal model or patients. In the present study, we hypothesized that intravenous infusion of bone-marrow derived mesenchymal stem cells (MSCs) improves tissue perfusion in a rat hindlimb ischemia model. Hindlimb ischemia was generated in Sprague–Dawley rats by femoral artery removal, then seven days after ischemic induction intravenous infusion of 1 × 106 MSCs (cell group) or vehicle (control group) was performed. As compared with the control, tissue perfusion was significantly increased in the cell group. Histological findings showed that capillary density was significantly increased in the cell group, with infused green fluorescent protein (GFP)-MSCs distributed in the ischemic limb. Furthermore, gene expression of vascular endothelial growth factor (VEGF) was significantly increased in ischemic hindlimb muscle tissues of rats treated with MSC infusion. In conclusion, intravenous infusion of bone-marrow derived MSCs improved tissue perfusion in ischemic hindlimbs through angiogenesis, suggesting that intravenous infusion of MSCs was a promising cell delivery method for treatment of CLTI.