Batteries (Nov 2022)

Deep Learning Classification of Li-Ion Battery Materials Targeting Accurate Composition Classification from Laser-Induced Breakdown Spectroscopy High-Speed Analyses

  • Marie-Chloé Michaud Paradis,
  • François R. Doucet,
  • Steeve Rousselot,
  • Alex Hernández-García,
  • Kheireddine Rifai,
  • Ouardia Touag,
  • Lütfü Ç. Özcan,
  • Nawfal Azami,
  • Mickaël Dollé

DOI
https://doi.org/10.3390/batteries8110231
Journal volume & issue
Vol. 8, no. 11
p. 231

Abstract

Read online

Laser-induced breakdown spectroscopy (LIBS) is a valuable tool for the solid-state elemental analysis of battery materials. Key advantages include a high sensitivity for light elements (lithium included), complex emission patterns unique to individual elements through the full periodic table, and record speed analysis reaching 1300 full spectra per second (1.3 kHz acquisition rate). This study investigates deep learning methods as an alternative tool to accurately recognize different compositions of similar battery materials regardless of their physical properties or manufacturer. Such applications are of interest for the real-time digitalization of battery components and identification in automated manufacturing and recycling plant designs.

Keywords