Journal of Food Quality (Jan 2021)

Classification and Prediction of Bee Honey Indirect Adulteration Using Physiochemical Properties Coupled with K-Means Clustering and Simulated Annealing-Artificial Neural Networks (SA-ANNs)

  • Majdi Al-Mahasneh,
  • Muhammad Al-U’datt,
  • Taha Rababah,
  • Mohamad Al-Widyan,
  • Aseel Abu Kaeed,
  • Ahmad Jobran Al-Mahasneh,
  • Nawaf Abu-Khalaf

DOI
https://doi.org/10.1155/2021/6634598
Journal volume & issue
Vol. 2021

Abstract

Read online

The higher demand and limited availability of honey led to different forms of honey adulteration. Honey adulteration is either direct by addition of various syrups to natural honey or indirect by feeding honey bees with sugar syrups. Therefore, a need has emerged for reliable and cost-effective quality control methods to detect honey adulteration in order to ensure both safety and quality of honey. In this study, honey is adulterated by feeding honey bees with various proportions of sucrose syrup (0 to 100%). Various physiochemical properties of the adulterated honey are studied including sugar profile, pH, acidity, moisture, and color. The results showed that increasing sucrose syrup in the feed resulted in a decrease in glucose and fructose contents significantly, from 33.4 to 29.1% and 45.2 to 35.9%, respectively. Sucrose content, however, increased significantly from 0.19 to 1.8%. The pH value increased significantly from 3.04 to 4.63 with increase in sucrose feed. Acidity decreased slightly but nonsignificantly with increase in sucrose feed and varied between 7.0 and 4.00 meq/kg for 0% and 100% sucrose, respectively. Honey’s lightness (L value) also increased significantly from 59.3 to 68.84 as sucrose feed increased. Other color parameters were not significantly changed by sucrose feed. K-means clustering is used to classify the level of honey adulteration by using the above physiological properties. The classification results showed that both glucose content and total sugar content provided 100% accurate classification while pH values provided the worst results with 52% classification accuracy. To further predict the percent honey adulteration, simulated annealing coupled with artificial neural networks (SA-ANNs) was used with sugar profile as an input. RBF-ANN was found to provide the best prediction results with SSE = 0.073, RE = 0.021, and overall R2 = 0.992. It is concluded that honey sugar profile can provide an accurate and reliable tool for detecting indirect honey adulteration by sucrose solution.